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ABSTRACT

Operator valued analogs of the Chandrasekhar H-function that occur in the

study of neutron transport in a slab with continuous energy dependence and

anisotropic scattering satisfy a system of nonlinear integral equations. An
appropriate Banach space setting is found for the study of this system. We
show that the system may be solved by iteration. We extend the domain of

analyticity of Hr and H by means of bifurcation theory.
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SIGNIFICANCE AND EXPLANATION

The Chandrasekhar H-equation is the following non-linear integral eguation:

1
& u
H(u) = 1 + ZH(n) ‘j)' 5 HWvav

where Yy is given, (¢ is a parameter, and H is the unknown. This equation
is of importance in a variety of physical situations involving transfer of
energy by radiative scattering processes, e.g. neutron transport.
The H-equation is related to convolution equations of the following type
(*) £(x) - [ k(x - y)E(y)dy = g(x) .
0

In anisotropic radiative transfer, the following generalization of (*)

occurs
(**) £(x,0) - [ [ k(x - y,0,0")f(e)de' dy = g(x,0) .
0 @

The equation (**) is studied in this paper by treating it as an equation
of the form (*). We must then interpret k as an operator, i.e.

k(x - y)E(y) = [ k(x - y,w,0")f(y,0")dw" .
Q

An explicit formula for k 1is given by equation (1.8) in the paper.
We consider here an H-equation in which H 1is regarded as an operator- ) -

valued function on Lm(Q), i.e.

H(uf = f(w) - f h(y,w,0') f(w')dw' .
Q

This generalization appears in the study of radiative transfer in a slab with i
anisotropic scattering and continuous energy dependence. We show that we may
solve our equation by iteration and obtain a bifurcation result, i.e. we show

that in some cases there are two solutions. Numerical and asymptotic results

of interest in transport theory may follow from our work.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.




OPERATOR-VALUED CHANDRASEKHAR H-FUNCTIONS

C. T. Kelley

I. Introduction

In [10], Mullikin considered Wiener-Hopf factorizations of certain operator-valued
functions that arise in the study of one-speed neutron transport in a slab with anisotropic
scattering. This factorization has the form

(1.1) (I = ;K(A))Hr(A,C)HE(-A,C) =1

In (1.1) K is the Fourier transform of a compact operator-valued function K(x) and

I is the identity. Hr =X and H2 - I are Fourier transforms of compact operator-valued
functions Fr and FZ whose supports lie in (0,»). [ 1is a complex parameter and

so that

(1.2) sup ||k ||
AeR

=1
sp

In (1.2), 'i.“sp denotes spectral radius. Mullikin derived a system of coupled non-
linear integral equations for the functions Hr(v,g) and HQ(V,C), where

(1.3) Hr'l(v,c) = Hr'l(l/v,;), Rev > 0

The purpose of this paper is three-fold. First we show that Mullikin's equations
are valid with only minor modifications in the more general case of anisotopic transport
depending continuously on energy. We develop notation that allows the nonlinear system
for Hr and HQ to be written in a compact way in a convenient Banach space setting.

We then show that the equations for Hr and H may be solved by an iterative method.

L

Mullikin and the author [8] have recently proved a similar result in the case of isotropic
scattering. Earlier results of this type may be found in [1], [2], and [6]. The proof

given here differs from that of [8] in that the power series expansions of Hr and HQ

play a direct role.

Finally, we show that Hr and H are analytic in V1l - g for ¢ in a cut

2

neighborhood of 1. Our proof depends on a bifurcation analysis of the nonlinear system

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and the National
Science Foundation under Grant No. MCS75-17385 AOl.




for Hr and Hl' Applications of results of this nature may be found in [7], [9],
and [11].
The equation for steady state neutron transport in a slab with anisotropic scattering

and continuous energy dependence may be written as follows, [12],

(1.4) M %% (x,w) + oP(x,w) = F(x,w)

F(x,0) = S(x,w) + g f Ko(w,w’)W(x,w')dw' .
Q

S Y —
Here w = (E,p)e€ [EO,Ell xs2==a, x> 0. E denotes energy and ¢ a direction vector u is

~»
the cosine of the angle made by the vector ¢ and the positive x-axis o0 is a continuous

positive function of E on [EO,Ell, 0 >1. K is continuous on £ x @ and satisfies

(1.5) The integral operator KO on C(C(Q) having kernel Ko(w,w)o_l(E')

is positive in the sense of [5] and has spectral radius 1.
S(x,w) 1is continuous on [0,®) X @ and satisfies

(1.6) [ sup |s(x,w)|dx < = .
0 weR

We seek solutions 1§ that satisfy the boundary conditions

i

(1.7) Y(0,w) =0, u>o0

“

lim Y (x,w)
X

0, <0

We let C(Q) and Lm(Q) denote the spaces of continuous and essentially bounded
functions on @ with the sup-norm. R and € are the real and complex numbers.

For B a Banach space and I ~an interval let L(B) be the algebra of bounded
operators on B, Com(B) the algebra of compact operators on B, Bp(I,H) (2 < B < ®)
the space of Bochner integrable functions from I to B.

We define K € Bl((O,m), Com(L_(R))) by

-|x|o &) /|ut] 1

(1.8) K(XEw = [ K (0,0")e 8(xu') T flw")dw' .
e [u*]
In (1.8), © denotes the Heavyside function.

We may then convert the problem given by (1.4) and (1.7) to a Wiener-Hopf equation

for Fe B ((0,®), L(2)
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©

(1.9) F(x) - ¢ [ K(x=-y)F(y)dy = S(x), x>0 .
0

The assumptions on K_ and the theory developed in [4], [5] and [6] imply that (1.9)

0

has a unique solution F for |¢| < 1 and that the function

L]

(I - gk(A) =1 -¢ [ Kxe

-0

x)‘dx, admits the Wiener-Hopf factorization (1.1). Let

e, ={we Qlu > 0}. We state some properties of H_and H  that will be useful in
what follows, these properties follow easily from [10].

Prop (1.1). Let B(A,z) be any of the operators Hz'r(A,c), H;}r(A'C)' then the
following hold

(i) B(A,Z) - I is an analytic Com(LQ(Q)) valued function for Icl <1, Rex > 0

(ii) B(X,Z) is a continuous L(LQ(Q))-valued function for Icl <1, Red > 0
(iii) B(A,;) - I is an integral operator with kernel in Lm(Q x Q) for ]c] cady |
Rel > 0.
Moreover if Hr,l(v'C) is given by (1.3), the kernel hr,k(v.w.m'.c) of Hr'l(v.g} -1

is nonnegative on £ X @, in fact

|v

(iv) hl(v,w,m',c) >0 on QXQl v>0, 0<g<l

(v) hr(v,w,w',;) >0 on § x ﬂ+ v

|v

0, O0< t<lX
(vi) h, is continuous on [0,®) x @ x @ for |z <1
(vii) hr is continuous on [0,®) x Q x Q+ for lcl < 1

(viii) ht and hz are increasing functions of v for 0 < g <1, and of

z for v>0,0 =0 < X,




|

II.

If A is an integral operator with kernel in LU(Q x Q), we denote by A' that
integral operator having as its kernel the transpose kernel of A. We define I' = I.
We let N denote the algebra of integral operators on C(C(Q) having kernels that

are in C(R x Q). We let kA(w,w') be the kernel of A € N. We define

(2.1) lIall, = s Ik, (w,0*) | -
LS,

N is a Banach algebra with this norm. Note that, for A,B € N

(2.2} kyp (@) = é Ky (@owg) ky (g w)dw

We let N+ denote the algebra of integral operators on Lw(Q) having kernels which are
continuous on Q+ x Q. The norm on N, is defined by
(2.3) ”A”N = sup )(kA(w,m')] !

A we Q

+
w'eq

As in [5]), [6] and [7] we consider 2 x 2 diagonal matrices of the form

A 0

(2.4) An= ‘.

where Al and Ar are integral operators having kernels in Lm(Q x Q). We denote the
space of such matrices by X and define, for A € X

(2.5) lall, = max(Ilkﬂmllm.llkA Il -

*
If A,B€ X, define AB and A

AQBR 0
(2.6) AB =
0 A'B'
: 2E: o
A 0
* X
(2.7) A = .
Al
0 Al

Let xo be the algebra formed by adjoining the identity to X. We have

4=
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( I 0 ) -
(2.8) I, & =1 '
Xo X

’ (o] I 0
(2.9) [zl d = 1. -
¥a 7o
When no confusion can result we drop the subscript xo and refer to Ix as I. Let
0
C([O,l),xo) = C be the space of continuous Xo valued functions. The norm on ( is
defined, for F € (C, by
(2.10) ||F“C = sup IIF(\))“X 5
0<v<1 0
Define amap L : C + C([0,1],X) as follows. For F(v) € C write F(v) = a(v)I + G(v)
where G(v) € C([0,1),X), then
= ' Syl AY '
(2.11) k‘”"z(v) Ky (w,0") 0 (-u") TE AT allu']
[ug |
0
+ [ K (w0 )8 (1) 2 x ( w ,w')dw ’
&9 0 0" G(E IV + ]uol G lo(Ey) 0 0
s N = ' ' EATITRE, T,
(2.12) k(LF);(v,w,w ) a(u)Ko(w,w )0 (u) B & 'u'
b {2 Kolorog) SEv + 0 6‘“”‘(;;(0(3) PR [
Hy (v, Z) 0
E Define H(v,Z) = . We have, as in [10], for |C| <1, Rev > 0,
3 0 H'(v,L)
r
*
(2.13) H(v,Z) = I + gL(H ) (v,0)H(V,T) .
We consider this equation in the subspace Co of C given by
(2.14) Co = {F(v) = oI +G(v) ¢ CIGQ €N, Gl e N forall v, ae C}

We may then consider (2.13) as an equation in the space CO. We define T € X by

K (0) 0
(2.15) T = 3 ;
) K' (0)

The assumptions on K imply that if T 1is considered as an operator on C(Q) x C(Q)

then there are positive functions u ul

u
in C(Q) so that the vector u = ‘ur) satisfies
R




(2.16) u-Tu=0, f u_ (Wu, (w)dw =1 .
Q E L

5 R S

1

2 € C([0,11,X) we say oI + P2 Br + F, if o> 8 and kF1 3.kF2 almost every-

u v
where in [0,1 x @xQ. If u = ¥ , V= Tle C(Q) x C(R) we say u>v if u_ >v_,
u, vy o e -

v, 2 v everywhere in Q. For u € (C(Q) x C(R) and a € R, we say u > a if » 1(“). '

L =2 a
Define H(g) € X0 by
HQ(O.C) 0
2.17) H(g) = 3
0 H'(0,%) 4
r 3
Note that ]
*
(2.18) B miawE » ooy =5, jeler.

The following lemma is crucial to what follows. The proof is similar to that in [7].
Lemma (2.1). The limit

lim_ H(Z) = H(1)

>l
exists in CO. Moreover, H(1l) satisfies
*
(2.19) H(l) = I + L(H (1))H(1) .

Proof. The second statement clearly follows from the first.

Define a map L, € L(CO) by

0
(2.20) LOF = 1lim (LF(V)) .

->0

The definition of H and (2.18) imply

*-1 *  *
B “(@ =1-zt@,H)) = H(C) (I ~ ¢T) .
For O < ¢ <1 we apply both sides of the above to the vector u and note that #H(Z) > I
to get
* *
u - C(LO(H W ws (o= glu
Set M = L0 ~ L, we have

* * * * * *
B (vnCl (L = t;(LO(H )) ) =1 -¢H (v,g)M(H)) .

*
Hence, as H (v,z) > C,




* * % *
u i LB (NGEYM(R 9) &> (- THE (v.Tlu

or

* * *
H (v,0)[(1 - C)u+ LMH)) ul <u .

z ) . By the definition of M, inf v (w) =a

* * v
Let v=(1-CZ)u+MH)) u-= (v e > 0, and
L we N
i?f v (w) = at > 0, therefore hr and hl are bounded on 9 x @ x [0,1] uniformly in
we
+

As 0 < H(v,z) < H(v,co) for . 0/ & £ 8y < 1, we have that

lim by (v,0,0'.0)

h (vyw,w') exists in L_([0,1] x Q x Q) by the dominated
g+l = 1

2"
convergence theorem.

To complete the proof one may now proceed exactly as in [7].

The lemma, implies that H(Z) is analytic in |z] <1  and continuous
on |C| < 1.

The main result of this section is the following

Theorem (2.1). The sequence H given for |z| <1

(2.21) Ho =1I

*
Hn+l & CL(Hn)Hn

converges to H(Z) in CO uniformly for |;l <1

Proof. H(Z) is the unique solution of (2.13) which is analytic in ]c] < 1. Let
©o

Z cnPn be the power series expansion of H(Z) about ¢ = 0. We have that RS 0 for
n=0

*
=1, and, for n>1, P = ] L(P)P,. Let S
= N
2+k=n n=0

P_. By considering

each n, P n

0

I
Il 2

the coefficients of the polynomials Hn , one can easily show
laeey - n @Il <lludeh - #odehll i -m @l <llra -s |l

Sn converges to H(l) by lemma (2.1), and the fact that Pn > 0 for each n.

Hence, the proof is complete.

Cie




III.
In this section we show that H(v,Z) is an analytic C0 valued function of V1 - £
in a cut neighborhood of § = 1. We do this by showing that ¢ = 1 1is a branch point
of order 2 of the equation (2.13). The proof follows the general theme of those in
[71, [9], and [11].
In this section set H =H(l), e =1 -, and G(e) = (H - H(C))H-l. It is easy

to show that G satisfies, for € > 0

€

*
(3.1) G(e) - HLU(G(E)H) ) = T——

[(I - G(e))H - I] - G(e)HL((G(e)E) )

The Frechet derivative of the map given by (3.1) with respect to G at (G,e) = (0,0)

is (I - L), where L € L(CO) is given by

(3.2) LK) = BL(&KH)), Ke O
As in [7], [9], and [11] we consider an alternate operator M defined by
(3.3) MEK) = m()),  Ke C, -

in (3.3), M= L0 - L. We require

Lemma (3.1). There is P € Co satisfying
i) P =p
(ii) P 1is independent of v
(£i4)NEpi>Ng
(iv) P - M(P) =0
(v) Pi =B
For the present we assume the lemma. A computaticn will show that the function Q(v) = VP
satisfies (I - L)Q = 0. Moreover if K is such that (I - M)K = 0, then the function
S(v) = VK satisfies (I - L)S = 0. Bifurcation of (3.1) at € = 0 will take place if
we can show that the only solutions to (I ~ M)K = 0 are of the form K = aP, a € € and
that the range of (I - M) has codimension 1 in CO.
(Kl 0

0 K') the operator M2K has the form
r

For K =




o S A A

(3.4) MK =
0 Wik )
rr
Moreover M2K and (Mixr)' are strictly positive elments of (C([0,1],N) and

A

C([O,l],N+) respectively if K, > 0, K, # 0 and Kr >0, Kr #* 0. As M2 is compact on

L 2

CO' we have that, up to a constant multiple, P is the only solution to (I - M2)P = 0
and hence to (I - M)P = 0 and that the range of (I - M) has codimension 1 in Co.
Therefore Q(v) = VP is, up to a constant multiple, the unique solution to (I - L)Q = 0.
Moreover, there is A € Cb such that A((X - L)K) = 0 for all K € Co and A(K) > 0 if
K >0 and K # 0. One may then proceed as in [7], [9] and [11] to obtain

Theorem (3.2). H(g) 1is analytic in vl - ¢ for S sufficiently near 1, arg(l - g) # 7.

Moreover we have the expansion

(3.5) H(Z) = H - ael/zQH + O(e) ,
where Q(v) = vP, and P is as in lemma (3.1),
1/2
A . A = 1)
(I -L)9=0 and a = KTGQT;TT >0

In [7), [9], and [11], the functional A had a simple integral representation. In
this case, however, it is not clear that A can be written in a simple way.
It remains to prove lemma (3.1). Let u be given by (2.16). Consider the equality

*
(3.6) (1= ©HO,Du = (I - &Ly (©) u .

The right hand side of (3.6) has a limit as ¢ approaches 1, hence
(3.7) lim (1 - §)H(0,Z)u =w > 0 .

>l

lel1

v
* *
If w=0, then (I - (LO(H )) Ju = 0 and hence there is v = (vr)' v ¥ 0 such that
L

*
(3.8) v - LO(H J)v = 0 and f vr(w)ve(m)dw =1

X
Define, for x = (x")e c) x C(Q)
2




(xr,vl)vr
(3.9) Px =
(xz,vr)vg

Then P satisfies (i)-(v). If w # 0 we have, by (2.13),

*
(1 = CYR(0, Z)ur= N1 = E)u + CLO(H ()Y@ - 2)H(,C)u .

*
Hence w = L(H )w. Therefore v satisfying (3.8) exists and P may be defined by (3.9).

Theorem (3.2) implies, in fact, that w = 0, and hence P 1is unique and given by

(3.8) and (3.9).
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